Với n nguyên dương, cho Q = 3n+3 + 3n+1 + 2n+2 + 2n+1
Tìm khẳng định đúng nhất:
Q luôn chia hết cho 13
Q luôn chia hết cho 11
Q luôn chia hết cho 5
Q luôn chia hết cho 6
Phát hiện mối liên hệ giữa hạng tử.
Nhóm các hạng tử có cùng cơ số rồi biến đổi
Q = 3n+3 + 3n+1 + 2n+2 + 2n+1
= 3n+1 . 32 + 3n+1 + 2n+1 . 2 + 2n+1
= 3n+1 . (32 + 1) + 2n+1 . (2 + 1)
= 3n+1 . 10 + 2n+1 . 3
= 3n+1 . 2.5 + 2n+1 . 3
= 3.2 . ( 3n . 5 + 2)
= 6. ( 3n . 5 + 2)
Vì 6\( \vdots \) 6 nên 6. ( 3n . 5 + 2) \( \vdots \) 6 với mọi n nguyên dương
Vậy Q luôn chia hết cho 6
Đáp án : D
Các bài tập cùng chuyên đề
Tính:
\(\frac{5}{9}:\left( {\frac{1}{{11}} - \frac{5}{{22}}} \right) + \frac{7}{4}.\left( {\frac{1}{{14}} - \frac{2}{7}} \right)\)
Tìm x thỏa mãn 2x + 3 = -x + 6
Tìm x biết:
\( - 2x + {\left( { - \frac{2}{5}} \right)^2} = 0,{1^2}\)
Tính \(\frac{{{{25}^{30}}}}{{{{125}^{15}}}}\)
Tính: T = [ (-43,57) . 40 – 40. 26,43] : [ -72 . 63,6 – 4,9 . 64]
Tìm x thỏa mãn: \(\left( { - 2x + \frac{5}{2}} \right).\left( {{x^2} + 4} \right) = 0\)
Tìm n biết:
\(\frac{{{8^7} + {8^7} + {8^7} + {8^7}}}{{{3^7} + {3^7} + {3^7}}}:\frac{{{2^7} + {2^7}}}{{{6^7} + {6^7} + {6^7} + {6^7} + {6^7} + {6^7}}} = {2^n}\)
Tính: \(B = 1,2.(3\frac{1}{3} - 2,2) - \frac{2}{{15}}.( - 2 + \frac{5}{6}) - {2022^0}\)
Tìm giá trị lớn nhất của biểu thức:
\(M = \frac{3}{{{{(2x + 1)}^4} + 2}}\)