Đề bài

Cho hai đường thẳng \(\left( {{d_1}} \right):mx + y = m + 1\,\,,\left( {{d_2}} \right):x + my = 2\,\)song song nhau khi và chỉ khi

  • A.

    \(m = 2.\)

  • B.

    \(m =  \pm 1.\)

  • C.

    \(m = 1.\)

  • D.

    \(m = - 1.\)

Phương pháp giải

Nếu \(\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} \ne \dfrac{{{c_1}}}{{{c_2}}}\) (với ba số \(a_2,b_2,c_2\) đều khác \(0\)) thì hai đường thẳng song song nhau.

Lời giải của GV Loigiaihay.com

+) Nếu \(m = 0\) thì \({d_1}:y = 1,{d_2}:x = 2\) cắt nhau tại \(\left( {2;1} \right)\).

+) Nếu \(m \ne 0\) thì \({d_1}//{d_2} \Leftrightarrow \dfrac{m}{1} = \dfrac{1}{m} \ne \dfrac{{m + 1}}{2} \Leftrightarrow m =  - 1\)  

Đáp án : D

BÌNH LUẬN

Danh sách bình luận

Đang tải bình luận...

Các bài tập cùng chuyên đề