Hai lực đồng quy ${{\overrightarrow{F}}_{1}}$ và ${{\overrightarrow{F}}_{2}}$ hợp với nhau một góc $\alpha $, hợp lực của hai lực này có độ lớn là:
\(F={{F}_{1}}+{{F}_{2}}+2{{F}_{1}}{{F}_{2}}\text{cos}\alpha \)
${{F}^{2}}={{F}_{1}}^{2}+{{F}_{2}}^{2}-2{{F}_{1}}{{F}_{2}}$
\(F=\sqrt{{{F}_{1}}^{2}+F_{2}^{2}}\)
\(F = \sqrt {{F_1}^2 + F_2^2 + 2{F_1}{F_2}{\rm{cos}}\alpha } \)
\(F = \sqrt {{F_1}^2 + F_2^2 + 2{F_1}{F_2}{\rm{cos}}\alpha } \)
Đáp án : D

Các bài tập cùng chuyên đề