Đề bài

Cho phương trình $\left( {x - 1} \right)\left( {{x^2} - 4mx - 4} \right) = 0$ .Phương trình có ba nghiệm phân biệt khi:

  • A.

    $m \in \mathbb{R}$.

  • B.

    $m \ne 0$.

  • C.

    $m \ne \dfrac{3}{4}$.

  • D.

    $m \ne  - \dfrac{3}{4}$.

Phương pháp giải

- Biến đổi phương trình \( \Leftrightarrow \left[ \begin{array}{l}x = 1\\{x^2} - 4mx - 4 = 0\end{array} \right.\).

- Phương trình có \(3\) nghiệm phân biệt \( \Leftrightarrow {x^2} - 4mx - 4 = 0\) có hai nghiệm phân biệt khác \(1\).

Lời giải của GV Loigiaihay.com

Ta có:$\left( {x - 1} \right)\left( {{x^2} - 4mx - 4} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\{x^2} - 4mx - 4 = 0\end{array} \right.$

Phương trình có $3$ nghiệm phân biệt khi ${x^2} - 4mx - 4 = 0$ có $2$ nghiệm phân biệt khác $1$

$ \Leftrightarrow \left\{ \begin{array}{l}\Delta'  > 0\\f\left( 1 \right) \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4{m^2} + 4 > 0\\ - 4m - 3 \ne 0\end{array} \right. \Leftrightarrow m \ne  - \dfrac{3}{4}$.

Đáp án : D

Chú ý

Một số em có thể sẽ chọn nhầm đáp án A vì quên mất rằng nghiệm của phương trình \({x^2} - 4mx - 4 = 0\) phải khác \(1\).

BÌNH LUẬN

Danh sách bình luận

Đang tải bình luận...

Các bài tập cùng chuyên đề