Kết quả của phép tính: \(\dfrac{{ - 2}}{3} + \dfrac{4}{3}\) là:
\(2\)
\(\dfrac{{ - 2}}{3}\)
\(\dfrac{2}{3}\)
\(\dfrac{2}{6}\)
Với $x = \dfrac{a}{m};\,y = \dfrac{b}{m}\,\left( {a,b,m \in \mathbb{Z},\,m \ne 0} \right)$ ta có:
\(x + y = \dfrac{a}{m} + \dfrac{b}{m} = \dfrac{{a + b}}{m}\)
\(\dfrac{{ - 2}}{3} + \dfrac{4}{3} = \dfrac{{ - 2 + 4}}{3} = \dfrac{2}{3}\)
Đáp án : C
Các bài tập cùng chuyên đề
Kết quả của phép tính $\dfrac{2}{3} + \dfrac{4}{5}$ là:
Chọn kết luận đúng nhất về kết quả của phép tính \(\dfrac{{ - 2}}{{13}} + \dfrac{{ - 11}}{{26}}\)
\(\dfrac{{23}}{{12}}\) là kết quả của phép tính:
Số \(\dfrac{{ - 3}}{{14}}\) viết thành hiệu của hai số hữu tỉ dương nào dưới đây?
Tính \(\dfrac{2}{7} + \left( {\dfrac{{ - 3}}{5}} \right) + \dfrac{3}{5},\) ta được kết quả là:
Cho $x + \dfrac{1}{2} = \dfrac{3}{4}$. Giá trị của x bằng:
Giá trị biểu thức \(\dfrac{2}{5} + \left( { - \dfrac{4}{3}} \right) + \left( { - \dfrac{1}{2}} \right)\) là :
Kết luận nào đúng khi nói về giá trị của biểu thức \(A = \dfrac{1}{3} - \left[ {\left( { - \dfrac{5}{4}} \right) - \left( {\dfrac{1}{4} + \dfrac{3}{8}} \right)} \right]\)
Số nào dưới đây là giá trị của biểu thức $B = \dfrac{2}{{11}} - \dfrac{5}{{13}} + \dfrac{9}{{11}} - \dfrac{8}{{13}}$
Cho các số hữu tỉ \(x = \dfrac{a}{b},y = \dfrac{c}{d}\,\,(a,b,c,d \in Z,b \ne 0,d \ne 0).\) Tổng $x + y$ bằng:
Tính nhanh \(\left( { - 2 - \dfrac{1}{3} - \dfrac{1}{5}} \right) - \left( {\dfrac{2}{3} - \dfrac{6}{5}} \right),\)ta được kết quả là:
Tính giá trị biểu thức \(M = \left( {\dfrac{2}{3} - \dfrac{1}{4} + 2} \right) - \left( {2 - \dfrac{5}{2} + \dfrac{1}{4}} \right) - \left( {\dfrac{5}{2} - \dfrac{1}{3}} \right)\).
Giá trị nào dưới đây của \(x\) thỏa mãn \(\dfrac{3}{7} - x = \dfrac{1}{4} - \left( { - \dfrac{3}{5}} \right)\)
Tìm \(x\) biết \(\dfrac{{11}}{{12}} - \left( {\dfrac{2}{5} + x} \right) = \dfrac{2}{3}\)
Gọi \({x_0}\) là số thỏa mãn \(x.\left( {2018 + \dfrac{1}{{2018}} - 2019 - \dfrac{1}{{2019}}} \right) = \dfrac{1}{3} + \dfrac{1}{6} - \dfrac{1}{2}.\) Khi đó
Giá trị của biểu thức $\dfrac{1}{{1.2}} + \dfrac{1}{{2.3}} + \dfrac{1}{{3.4}} + \dfrac{1}{{4.5}} + ... + \dfrac{1}{{2018.2019}}$ là