Một chất điểm dao động điều hòa trên trục Ox. Khi chất điểm qua vị trí cân bằng thì tốc độ của nó là 20cm/s. Khi chất điểm có tốc độ là 10cm/s thì gia tốc của nó có độ lớn là \(40\sqrt 3 cm/s\). Biên độ của chất điểm bằng
Tại VTCB: \({v_{\max }} = \omega A\)
Hệ thức độc lập theo thời gian: \({A^2} = \dfrac{{{v^2}}}{{{\omega ^2}}} + \dfrac{{{a^2}}}{{{\omega ^4}}}\)
Khi chất điểm qua VTCB: \({v_{\max }} = \omega A \Rightarrow \omega = \frac{{{v_{\max }}}}{A} = \frac{{20}}{A}\)
Lại có: \({A^2} = \frac{{{v^2}}}{{{\omega ^2}}} + \frac{{{a^2}}}{{{\omega ^4}}} \Leftrightarrow {A^2}{\omega ^2} = {v^2} + \frac{{{a^2}}}{{{\omega ^2}}}\)
\(\begin{array}{l} \Leftrightarrow {A^2}.\frac{{{{20}^2}}}{{{A^2}}} = {10^2} + \frac{{{{\left( {40\sqrt 3 } \right)}^2}}}{{\frac{{{{20}^2}}}{{{A^2}}}}} \Leftrightarrow {20^2} = {10^2} + \frac{{{{\left( {40\sqrt 3 } \right)}^2}}}{{{{20}^2}}}.{A^2}\\ \Rightarrow {A^2} = 25 \Rightarrow A = 5cm\end{array}\)
Đáp án : B
Các bài tập cùng chuyên đề
Một vật dao động điều hòa với phương trình $x=Acos(ωt+φ)$. $A$ được gọi là:
Một vật dao động điều hoà theo phương trình \(x = 2cos\left( {5\pi t + \frac{{7\pi }}{3}} \right)cm\). Biên độ dao động của vật là:
Phương trình dao động điều hòa của một chất điểm có dạng \(x = {\rm{ }}Acos\left( a \right)t\) .Độ dài quỹ đạo của dao động là:
Một chất điểm dao động điều hoà trên quỹ đạo $MN = 30 cm$, biên độ dao động của vật là:
Một vật dao động điều hòa với phương trình $x=Acos(ωt+φ)$. Pha dao động tại thời điểm $t$ là:
Một vật dao động điều hòa theo phương trình x = 3cos(7πt + π) cm, pha dao động tại thời điểm t = 1 (s) là:
Một vật dao động điều hoà theo phương trình \(x = {\rm{ }}-5cos(5\pi t{\rm{ }} - 7\pi /6)cm\). Biên độ dao động và pha ban đầu của vật là:
Một vật dao động điều hòa thực hiện được N dao động trong thời gian ∆t giây. Chu kỳ dao động của vật là:
Một chất điểm dao động điều hòa với phương trình \(x = Acos(\omega t + \varphi )\), chu kỳ dao động của chất điểm được xác định bởi:
Một vật dao động điều hòa trong thời gian $20$ giây vật thực hiện được $80$ dao động toàn phần. Chu kỳ dao động của vật là:
Một con lắc lò xo dao động với phương trình $x = 6c{\text{os}}\left( {20\pi t } \right)cm$. Xác định chu kỳ, tần số dao động của chất điểm.
Chất điểm dao động điều hòa với phương trình \(x = 6cos\left( {10t - \dfrac{{3\pi }}{2}} \right)cm\). Li độ của chất điểm khi pha dao động bằng \(\dfrac{{2\pi }}{3}\) là:
Một chất điểm dao động điều hòa với phương trình \(x = Acos(\omega t + \varphi )\). Biểu thức vận tốc tức thời của chất điểm là:
Một vật dao động điều hòa có phương trình \(x = 2cos\left( {2\pi t - \frac{{7\pi }}{6}} \right){\rm{ }}cm\). Li độ của vật tại thời điểm $t = 0,25 (s)$ là:
Một chất điểm dao động điều hòa với phương trình $x = Ac{\text{os}}\left( {\omega t + \varphi } \right)$. Tốc độ cực đại vật đạt được trong quá trình dao động là:
Một chất điểm dao động điều hoà với phương trình dạng \(x = 5cos(7\pi t{\rm{ }} + \dfrac{{7\pi }}{6})cm\). Biểu thức vận tốc tức thời của chất điểm là:
Một chất điểm dao động điều hòa với phương trình \(x = Acos(\omega t + \varphi )\). Biểu thức gia tốc tức thời của chất điểm là:
Biểu thức nào sau đây là biểu thức tính gia tốc của một vật dao động điều hòa?
Một vật dao động điều hoà chu kỳ T. Gọi \({v_{max}}\) và \({a_{max}}\) tuơng ứng là vận tốc cực đại và gia tốc cực đại của vật. Hệ thức liên hệ sai giữa \({v_{max}}\) và \({a_{max}}\) là:
Một chất điểm dao động điều hòa có tần số góc \(\omega \), tại thời điểm t chất điểm có li độ \(x{\rm{ }}\left( {cm} \right)\) và vận tốc \(v{\rm{ }}\left( {cm/s} \right)\). Biên độ dao động điều hòa của chất điểm là: