ƯU ĐÃI 50% HỌC PHÍ + TẶNG MIỄN PHÍ BỘ SÁCH ĐỀ TỔNG HỢP
Cho hàm số y=f(x) có đạo hàm f′(x)=(x−1)(x2−2)(x4−4). Số điểm cực trị của hàm số y=f(x) là:
3
2
4
1
- Bước 1: Giải phương trình f′(x)=0.
- Bước 2: Xét dấu đạo hàm và kết luận.
+ Các điểm mà đạo hàm đổi dấu từ âm sang dương là các điểm cực tiểu.
+ Các điểm mà đạo hàm đổi dấu từ dương sang âm là các điểm cực đại.
Ta có: f′(x)=0
⇔(x−1)(x2−2)(x4−4)=0⇔(x−1)(x2−2)2(x2+2)=0⇔[x=1x=√2x=−√2
Một điểm được gọi là cực trị của hàm số khi đạo hàm của hàm số đổi dấu qua điểm đó.
Ta nhận thấy đạo hàm của hàm số chỉ đổi dấu qua x=1 và không đổi dấu qua x=±√2.
Vậy hàm số có 1 điểm cực trị.
Đáp án : D
Các bài tập cùng chuyên đề
Cho hàm số y=f(x) có đạo hàm trên (a;b). Nếu f′(x) đổi dấu từ âm sang dương qua điểm x0 thuộc (a;b) thì
Giả sử y=f(x) có đạo hàm cấp hai trên (a;b). Nếu {f′(x0)=0f″(x0)>0 thì
Nếu x0 là điểm cực tiểu của hàm số thì f(x0) là:
Nếu x0 là điểm cực đại của hàm số thì (x0;f(x0)) là:
Cho các phát biểu sau:
1. Hàm số y=f(x) đạt cực đại tại x0 khi và chỉ khi đạo hàm đổi dấu từ dương sang âm qua x0.
2. Hàm số y=f(x) đạt cực trị tại x0 khi và chỉ khi x0 là nghiệm của đạo hàm.
3. Nếu f′(x0)=0 và f″(x0)=0 thì x0 không phải là cực trị của hàm số y=f(x) đã cho.
4. Nếu f′(x0)=0 và f″(xo)>0 thì hàm số đạt cực đại tại x0.
Các phát biểu đúng là:
Điều kiện để hàm số bậc ba không có cực trị là phương trình y′=0 có:
Chọn phát biểu đúng:
Số điểm cực trị của đồ thị hàm số y=x−12−x là:
Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y=x3−3x2+1 là:
Hàm số nào sau đây không có cực trị?
Hàm số f(x)=2sin2x−3 đạt cực tiểu tại:
Đồ thị hàm số nào sau đây có 3 điểm cực trị?
Đồ thị hàm số y=x3−3x+2 có 2 điểm cực trị A,B. Diện tích tam giác OAB với O(0;0) là gốc tọa độ bằng:
Cho hàm số y=f(x) có bảng biến thiên trên khoảng (0;2) như sau:
Khẳng định nào sau đây là khẳng định đúng:
Cho hàm số y=f(x) có bảng biến thiên như sau:
Khẳng định nào sau đây là khẳng định sai:
Cho hàm số y=f(x) có bảng biến thiên như sau. Khẳng định nào dưới đây là đúng?
Cho hàm số y=f(x) có bảng biến thiên như hình bên dưới, chọn khẳng định sai:
Hàm số y=x3−3x2+4 đạt cực tiểu tại:
Cho hàm số y=−x2+3x+6x+2, chọn kết luận đúng:
Cho hàm số bậc hai y=f(x) có đồ thị như hình vẽ bên, một hàm số g(x) xác định theo f(x) có đạo hàm g′(x)=f(x)+m. Tìm tất cả các giá trị thực của tham số m để hàm số g(x) không có cực trị.