Hàm số $f\left( x \right) = 2\sin 2x - 3$ đạt cực tiểu tại:
$x = \dfrac{\pi }{4} + k\pi $
$x = \dfrac{\pi }{4} + \dfrac{{k\pi }}{2}$
$x = \dfrac{\pi }{2} + k\pi $
$x = \dfrac{\pi }{4} + \dfrac{\left( {2k + 1}\right)\pi }{2} $
Quy tắc 2:
- Bước 1: Tìm tập xác định của hàm số.
- Bước 2: Tính $f'\left( x \right)$, giải phương trình $f'\left( x \right) = 0$ và kí hiệu ${x_1},...,{x_n}$ là các nghiệm của nó.
- Bước 3: Tính $f''\left( x \right)$ và $f''\left( {{x_i}} \right)$.
- Bước 4: Dựa và dấu của $f''\left( {{x_i}} \right)$ suy ra điểm cực đại, cực tiểu:
+ Tại các điểm ${x_i}$ mà $f''\left( {{x_i}} \right) > 0$ thì đó là điểm cực tiểu của hàm số.
+ Tại các điểm ${x_i}$ mà $f''\left( {{x_i}} \right) < 0$ thì đó là điểm cực đại của hàm số.
Ta có: $f\left( x \right) = 2\sin 2x - 3$
TXĐ: $D = R.$
$f'\left( x \right) = 4\cos 2x$, $f'\left( x \right) = 0 \Leftrightarrow \cos 2x = 0 \Leftrightarrow 2x =\dfrac{\pi }{2} + k\pi $ $\Leftrightarrow x = \dfrac{\pi }{4} + \dfrac{{k\pi }}{2}$, $k \in Z$
$f''\left( x \right) = - 8\sin 2x$
Ta có: $f''\left( {\dfrac{\pi }{4} + \dfrac{{k\pi }}{2}} \right) = - 8\sin \left( {\dfrac{\pi }{2} + k\pi } \right) $ , $k \in Z$
Khi $k=2n$ thì \(\sin \left( {\dfrac{\pi }{2} + 2n\pi } \right) = \sin \dfrac{\pi }{2} = 1\) nên \(f''\left( {\dfrac{\pi }{4} + \dfrac{{2n\pi }}{2}} \right) = - 8 < 0\)
Khi $k=2n+1$ thì \(\sin \left( {\dfrac{\pi }{2} + \left( {2n + 1} \right)\pi } \right) = \sin \dfrac{{3\pi }}{2} = - 1\) nên \(f''\left( {\dfrac{\pi }{4} + \dfrac{{\left( {2n + 1} \right)\pi }}{2}} \right) = 8 > 0\)
Vậy hàm số đạt cực tiểu tại $x = \dfrac{\pi }{4} + \dfrac{\left( {2k + 1}\right)\pi }{2} $
Đáp án : D
Các bài tập cùng chuyên đề
Cho hàm số $y = f\left( x \right)$ có đạo hàm trên $\left( {a;b} \right)$. Nếu $f'\left( x \right)$ đổi dấu từ âm sang dương qua điểm ${x_0}$ thuộc \((a;b)\) thì
Giả sử $y = f\left( x \right)$ có đạo hàm cấp hai trên $\left( {a;b} \right)$. Nếu $\left\{ \begin{gathered}f'\left( {{x_0}} \right) = 0 \hfill \\ f''\left( {{x_0}} \right) > 0 \hfill \\ \end{gathered} \right.$ thì
Nếu ${x_0}$ là điểm cực tiểu của hàm số thì $f\left( {{x_0}} \right)$ là:
Nếu ${x_0}$ là điểm cực đại của hàm số thì $\left( {{x_0};f\left( {{x_0}} \right)} \right)$ là:
Cho các phát biểu sau:
1. Hàm số $y = f\left( x \right)$ đạt cực đại tại ${x_0}$ khi và chỉ khi đạo hàm đổi dấu từ dương sang âm qua ${x_0}$.
2. Hàm số $y = f\left( x \right)$ đạt cực trị tại ${x_0}$ khi và chỉ khi ${x_0}$ là nghiệm của đạo hàm.
3. Nếu $f'\left( {{x_0}} \right) = 0$ và $f''\left( {{x_0}} \right) = 0$ thì ${x_0}$ không phải là cực trị của hàm số $y = f\left( x \right)$ đã cho.
4. Nếu $f'\left( {{x_0}} \right) = 0$ và $f''\left( {{x_o}} \right) > 0$ thì hàm số đạt cực đại tại ${x_0}$.
Các phát biểu đúng là:
Điều kiện để hàm số bậc ba không có cực trị là phương trình $y' = 0$ có:
Chọn phát biểu đúng:
Số điểm cực trị của đồ thị hàm số $y = \dfrac{{x - 1}}{{2 - x}}$ là:
Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số $y = {x^3} - 3{x^2} + 1$ là:
Hàm số nào sau đây không có cực trị?
Đồ thị hàm số nào sau đây có $3$ điểm cực trị?
Cho hàm số $y = f\left( x \right)$ có đạo hàm $f'\left( x \right) = \left( {x -1}\right)\left({{x^2}- 2} \right)\left( {{x^4} - 4} \right)$. Số điểm cực trị của hàm số $y = f\left( x \right)$ là:
Đồ thị hàm số $y = {x^3} - 3x + 2$ có $2$ điểm cực trị $A,\;B.$ Diện tích tam giác $OAB\;$ với $O(0;0)$ là gốc tọa độ bằng:
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên trên khoảng $\left( {0;2} \right)$ như sau:
Khẳng định nào sau đây là khẳng định đúng:
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau:
Khẳng định nào sau đây là khẳng định sai:
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như sau. Khẳng định nào dưới đây là đúng?
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như hình bên dưới, chọn khẳng định sai:
Hàm số $y = {x^3} - 3x^2 + 4$ đạt cực tiểu tại:
Cho hàm số $y = \dfrac{{ - {x^2} + 3x + 6}}{{x + 2}}$, chọn kết luận đúng:
Cho hàm số bậc hai $y = f\left( x \right)$ có đồ thị như hình vẽ bên, một hàm số $g\left( x \right)$ xác định theo $f\left( x \right)$ có đạo hàm $g'\left( x \right) = f\left( x \right) + m$. Tìm tất cả các giá trị thực của tham số $m$ để hàm số $g\left( x \right)$ không có cực trị.