Bài 14 trang 55 Vở bài tập toán 9 tập 2

Giải Bài 14 trang 55 VBT toán 9 tập 2. Xác định a, b’, c rồi dùng công thức nghiệm thu gọn giải phương trình:...

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Xác định a, b’, c rồi dùng công thức nghiệm thu gọn giải phương trình:

LG a

\(4{x^2} + 4x + 1 = 0\)

Phương pháp giải:

Xét phương trình bậc hai \(a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)\) với \(b = 2b'\) và biệt thức \(\Delta ' = {\left( {b'} \right)^2} - ac.\) 

Trường hợp 1. Nếu \(\Delta ' < 0\) thì phương trình vô nghiệm.

Trường hợp 2. Nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} =  - \dfrac{{b'}}{a}\)

Trường hợp 3. Nếu \(\Delta ' > 0\) thì phương trình có hai nghiệm phân biệt: \({x_{1,2}} =   \dfrac{{-b' \pm \sqrt {\Delta '} }}{a}\)

Lời giải chi tiết:

\(a = 4;b' = 2;c = 1\);\(\Delta ' = {\left( {b'} \right)^2} - ac = {2^2} - 4.1 = 0\)

Phương trình có nghiệm kép \({x_1} = {x_2} = \dfrac{{ - b'}}{a} =  - \dfrac{1}{2}.\)

LG b

\(13852{x^2} - 14x + 1 = 0\) 

Phương pháp giải:

Xét phương trình bậc hai \(a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)\) với \(b = 2b'\) và biệt thức \(\Delta ' = {\left( {b'} \right)^2} - ac.\)

Trường hợp 1. Nếu \(\Delta ' < 0\) thì phương trình vô nghiệm.

Trường hợp 2. Nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} =  - \dfrac{{b'}}{a}\)

Trường hợp 3. Nếu \(\Delta ' > 0\) thì phương trình có hai nghiệm phân biệt: \({x_{1,2}} =   \dfrac{{-b' \pm \sqrt {\Delta '} }}{a}\)

Lời giải chi tiết:

\(a = 13852;b' =  - 7;c = 1\);\(\Delta ' = {\left( {b'} \right)^2} - ac \)\(= {\left( { - 7} \right)^2} - 13852.1 =  - 13803 < 0\) 

Phương trình vô nghiệm. 

LG c

\(5{x^2} - 6x + 1 = 0\)

Phương pháp giải:

Xét phương trình bậc hai \(a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)\) với \(b = 2b'\) và biệt thức \(\Delta ' = {\left( {b'} \right)^2} - ac.\) 

Trường hợp 1. Nếu \(\Delta ' < 0\) thì phương trình vô nghiệm.

Trường hợp 2. Nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} =  - \dfrac{{b'}}{a}\)

Trường hợp 3. Nếu \(\Delta ' > 0\) thì phương trình có hai nghiệm phân biệt: \({x_{1,2}} =   \dfrac{{-b' \pm \sqrt {\Delta '} }}{a}\) 

Lời giải chi tiết:

\(a = 5;b' =  - 3;c = 1\); \(\Delta ' = {\left( {b'} \right)^2} - ac = {\left( { - 3} \right)^2} - 5.1 = 4 > 0;\)\(\sqrt {\Delta '}  = 2\)

Phương trình có hai nghiệm phân biệt \({x_1} = \dfrac{{ - b' + \sqrt {\Delta '} }}{a} \)\(= \dfrac{{ - \left( { - 3} \right) + \sqrt 4 }}{5} = 1;\)\({x_2} = \dfrac{{ - b' - \sqrt {\Delta '} }}{a} \)\(= \dfrac{{ - \left( { - 3} \right) - \sqrt 4 }}{5} = \dfrac{1}{5}\)

LG d

\( - 3{x^2} + 4\sqrt 6 x + 4 = 0\)

Phương pháp giải:

Xét phương trình bậc hai \(a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)\) với \(b = 2b'\) và biệt thức \(\Delta ' = {\left( {b'} \right)^2} - ac.\)

Trường hợp 1. Nếu \(\Delta ' < 0\) thì phương trình vô nghiệm.

Trường hợp 2. Nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} =  - \dfrac{{b'}}{a}\)

Trường hợp 3. Nếu \(\Delta ' > 0\) thì phương trình có hai nghiệm phân biệt: \({x_{1,2}} =   \dfrac{{-b' \pm \sqrt {\Delta '} }}{a}\)

Lời giải chi tiết:

\(a =  - 3;b' = 2\sqrt 6 ;c = 4\);\(\Delta ' = {\left( {b'} \right)^2} - ac \)\(= {\left( {2\sqrt 6 } \right)^2} - \left( { - 3} \right).4 = 36 > 0;\)\(\sqrt {\Delta '}  = 6\)

Phương trình có hai nghiệm phân biệt \({x_1} = \dfrac{{ - b' + \sqrt {\Delta '} }}{a}\)\( = \dfrac{{ - 2\sqrt 6  + \sqrt {36} }}{{ - 3}} = \dfrac{{2\sqrt 6  - 6}}{3};\)

\({x_2} = \dfrac{{ - b' - \sqrt {\Delta '} }}{a} \)\(= \dfrac{{ - 2\sqrt 6  - \sqrt {36} }}{{ - 3}} = \dfrac{{2\sqrt 6  + 6}}{3}\)

Loigiaihay.com

Quảng cáo

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close