Bài 3.25 trang 124 SBT đại số và giải tích 11

Giải bài 3.25 trang 124 sách bài tập đại số và giải tích 11. Cho cấp số cộng với...

Đề bài

Cho cấp số cộng với \({u_1} =  - 2,{u_{19}} = 52\). Tổng của \(20\) số hạng đầu là:

A. \(1060\)                       B. \( - 570\)

C. \(530\)                         D. \( - 530\)

Phương pháp giải - Xem chi tiết

Sử dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\) tìm \(d\).

Sử dụng công thức \({S_n} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\) tính tổng \(n\) số hạng đầu.

Lời giải chi tiết

Ta có: \({u_{19}} = {u_1} + 18d\) \( \Leftrightarrow 52 =  - 2 + 18d \Leftrightarrow d = 3\).

Khi đó \({S_{20}} = \dfrac{{20.\left[ {2.\left( { - 2} \right) + \left( {20 - 1} \right).3} \right]}}{2} = 530\).

Chọn C.

Loigiaihay.com

Xem thêm tại đây: Bài 3: Cấp số cộng
?>
Gửi bài tập - Có ngay lời giải