Bài 3.18 trang 123 SBT đại số và giải tích 11

Giải bài 3.18 trang 123 sách bài tập đại số và giải tích 11. Khảo sát tính tăng, giảm của dãy số ...

Đề bài

Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 1 - 7n.\)

a) Khảo sát tính tăng, giảm của dãy số ;

b) Chứng minh dãy số trên là cấp số cộng. Lập công thức truy hồi của dãy số ;

c) Tính tổng 100 số hạng đầu của dãy số.

Phương pháp giải - Xem chi tiết

a) Xét hiệu \({u_{n + 1}} - {u_n}\) suy ra kết luận.

b) Sử dụng định nghĩa cấp số cộng \({u_{n + 1}} = {u_n} + d\) là cấp số cộng có công sai \(d\).

c) Sử dụng công thức tính tổng \({S_n} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\)

Lời giải chi tiết

a) Xét hiệu \(H = {u_{n + 1}} - {u_n}\)\( = 1 - 7\left( {n + 1} \right) - \left( {1 - 7n} \right) =  - 7 < 0\)

Vậy dãy số giảm.

b) Do \({u_{n + 1}} = {u_n} - 7\) nên dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} =  - 6;d =  - 7.\)

Công thức truy hồi là \(\left\{ \begin{array}{l}{u_1} =  - 6\\{u_{n + 1}} = {u_n} - 7{\rm{ voi }}n \ge 1\end{array} \right.\) .

c) \({S_{100}} = \dfrac{{{u_1}\left( {2{u_1} + 99d} \right)}}{2}\) \( = \dfrac{{ - 6\left[ {2.\left( { - 6} \right) + 99.\left( { - 7} \right)} \right]}}{2} =  - 35250\)

Loigiaihay.com

Xem thêm tại đây: Bài 3: Cấp số cộng
?>
Gửi bài tập - Có ngay lời giải