Dạng 4: Các bài toán về số tự nhiên và tích các chữ số của nó Toán nâng cao lớp 5

Tải về

Tìm một số tự nhiên có ba chữ số, biết rằng số đó gấp 5 lần tích các chữ số của nó. Tìm số tự nhiên có 2 chữ số biết rằng nếu ta viết thêm số 21 vào bên trái số đó ta được số mới gấp 31 lần số cần tìm.

Tổng hợp đề thi vào lớp 6 các trường

Có đáp án và lời giải chi tiết

Quảng cáo

Phân tích cấu tạo của một số tự nhiên:

$\overline {ab}  = a \times 10 + b$

$\overline {abc}  = a \times 100 + b \times 10 + c = \overline {ab}  \times 10 + c = a \times 100 + \overline {bc} $

$\overline {abcd}  = a \times 1000 + b \times 100 + c \times 10 + d = \overline {abc}  \times 10 + d = a \times 1000 + \overline {bcd} $

 

Một số cách phân tích số đặc biệt:

$\overline {a00}  = a \times 100$

\(\overline {aaa}  = a \times 111\)

$\overline {abab}  = \overline {ab}  \times 101$

$\overline {ababab}  = \overline {ab}  \times 10101$

Ví dụ: Tìm một số tự nhiên có ba chữ số, biết rằng số đó gấp 5 lần tích các chữ số của nó.

Giải

Gọi số cần tìm là $\overline {abc} $.

Theo đề bài ta có:

$\overline {abc}  = 5 \times a \times b \times c$

Vì $5 \times a \times b \times c$ chia hết cho 5 nên $\overline {abc} $chia hết cho 5.

Vậy c = 0 hoặc 5. Nhưng c không thể bằng 0, vậy c = 5

Số cần tìm có dạng $\overline {ab5} $. Thay vào ta có:

$\overline {ab5}  = 5 \times a \times b \times 5$

$\overline {ab5}  = 25 \times a \times b$

Vì $25 \times a \times b$ chia hết cho 25 nên $\overline {ab5} $ chia hết cho 25. Suy ra b = 2 hoặc 7.

Vì 25 x a x b là số lẻ nên b = 7.

Thay vào ta có $\overline {a75}  = 25 \times a \times 7$

Tìm được a = 1

Vậy số cần tìm là 175.

Tải về

Quảng cáo
close