Có bao nhiêu số tự nhiên có \(4\) chữ số đôi một khác nhau không vượt quá \(2020?\)
Sử dụng hai qui tắc đếm cơ bản
Gọi số cần tìm là \(\overline {abcd} \left( {a \ne 0,0 \le a,b,c,d \le 9,a,b,c,d \in N} \right)\)
Theo bài ra ta có \(\overline {abcd} \le 2020\)
+) TH1 : \(a = 1\)
\(b\) có 9 cách chọn
\(c\) có 8 cách chọn
\(d\) có 7 cách chọn
Nên có \(9.8.7 = 504\) số
+)TH2 : \(a = 2\) suy ra \(b = 0\), \(c = 1\) và \(d\) có \(7\) cách chọn
Nên có \(7\) số thỏa mãn.
Vậy có tất cả \(504 + 7 = 511\) số.
Đáp án : D

Các bài tập cùng chuyên đề
Danh sách bình luận