Cho biểu thức $C = \dfrac{{2\sqrt x - 9}}{{x - 5\sqrt x + 6}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} - \dfrac{{2\sqrt x + 1}}{{3 - \sqrt x }}$
với $x \ge 0;x \ne 4;x \ne 9$.
Tìm $x$ để $C < 1$
$0 \le x < 9$
$0 \le x < 9;x \ne 4$
$4 < x < 9$
$0 < x < 4$
Đáp án : B
- Chuyển vế, quy đồng các phân thức sau đó xét các trường hợp xảy ra của bất phương trình
-So sánh điều kiện rồi kết luận nghiệm.
Theo câu trước ta có $C = \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}}$ với $x \ge 0;x \ne 4;x \ne 9$
Để $C < 1$
$\dfrac{{\sqrt x + 1}}{{\sqrt x - 3}} < 1 \\ \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}} - \dfrac{{\sqrt x - 3}}{{\sqrt x - 3}} < 0 \\ \dfrac{4}{{\sqrt x - 3}} < 0$
Mà $4 > 0$ nên $\sqrt x - 3 < 0 $ hay $\sqrt x < 3 \Rightarrow x < 9$
Kết hợp điều kiện $x \ge 0;x \ne 4;x \ne 9$ suy ra $0 \le x < 9;x \ne 4$.
Các bài tập cùng chuyên đề
Giá trị của biểu thức \(\sqrt {{{\left( {4 - \sqrt 5 } \right)}^2}} - \sqrt {6 - 2\sqrt 5 } \) là:
Giá trị của biểu thức \(\sqrt {32} + \sqrt {50} - 3\sqrt 8 - \sqrt {18} \) là
Rút gọn biểu thức \(5\sqrt a + 2\sqrt {\dfrac{a}{4}} - a\sqrt {\dfrac{4}{a}} - \sqrt {25a} \) với \(a > 0\) ta được
Giá trị biểu thức \(\left( {\sqrt 5 + \sqrt 2 } \right)\sqrt {7 - 2\sqrt {10} } \) là
Rút gọn biểu thức \(2\sqrt a - \sqrt {9{a^3}} + {a^2}\sqrt {\dfrac{{16}}{a}} + \dfrac{2}{{{a^2}}}\sqrt {36{a^5}} \) với $a > 0$ ta được
Đẳng thức nào dưới đây là đúng?
Chọn khẳng định đúng?
Cho biểu thức \(P = \dfrac{{2x}}{{\sqrt x + 1}}\). Giá trị của $P$ khi $x = 9$ là
Cho biểu thức \(P = \dfrac{x}{{\sqrt x + 1}}\). Giá trị của $P$ khi $x = \dfrac{2}{{2 - \sqrt 3 }}$ là
Cho biểu thức \(P = \dfrac{{\sqrt x + 1}}{{\sqrt x - 2}}\).
Giá trị của $P$ khi $x = 3 + 2\sqrt 2 $ là:
Cho biểu thức \(P = \dfrac{{x + 2\sqrt x + 2}}{{\sqrt x }}\)với $x > 0$. So sánh $P$ với $4$.
Cho biểu thức \(P = \dfrac{{3\sqrt x - 1}}{{\sqrt x + 1}}\)với $x \ge 0$. Tìm $x$ biết $P = \sqrt x $ .
Cho $P = \dfrac{2}{{\sqrt x + 1}}$.
Có bao nhiêu giá trị $x \in \mathbb{Z}$ để $P \in \mathbb{Z}$ ?
Cho \(A = \dfrac{{2\sqrt x - 1}}{{\sqrt x + 2}}\) với \(x \ge 0.\) Có bao nhiêu giá trị của \(x\) để \(A\) có giá trị nguyên.
Cho \(A = \dfrac{1}{{\sqrt 3 - 1}} - \sqrt {27} + \dfrac{3}{{\sqrt 3 }};\)\(B = \dfrac{{5 + \sqrt 5 }}{{\sqrt 5 + 2}} + \dfrac{{\sqrt 5 }}{{\sqrt 5 - 1}} - \dfrac{{3\sqrt 5 }}{{3 + \sqrt 5 }}\). Chọn câu đúng.
Tính giá trị của \(A =\dfrac{1}{{2\sqrt 1 + 1\sqrt 2 }} + \dfrac{1}{{3\sqrt 2 + 2\sqrt 3 }} + ... + \dfrac{1}{{2018\sqrt {2017} + 2017\sqrt {2018} }}\)
Rút gọn biểu thức: \(T = \dfrac{{\left( {\sqrt {2a} - 2\sqrt 2 } \right)\left( {a - 1} \right)}}{{a - \sqrt a - 2}}\left( {a > 0;a \ne 4} \right)\)